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Abstract 
Because autonomous vehicles and intelligent traffic systems play a bigger role, robust, scalable and secure traffic prediction 

models are more necessary than ever. The integration of federated AI is studied in this article as a leading way to improve 

vehicle upkeep and guide traffic in autonomous transportation. Using just the most current research in deep learning for traffic 

flow modeling, forecasting vehicle routes and decision-making algorithms, the authors highlight that using federated AI can 

enhance safety, cut down on costs for repairs and increase up-to-date knowledge of how things are running, while preserving 

privacy. When learning is spread among connected vehicles and support nodes, the suggested method can support both 

geographical adaptability and nationwide scalability. As a result of this shift, everything from the design to the development 

of AI-driven mobility becomes smoother and people gain more trust. The analysis of present predictive methods and the issues 

of using them shows that federated AI holds great promise for intelligent transportation systems. 
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I. INTRODUCTION 
 

America’s transportation network, like those in other 

developed countries, is reaching a stage where public 

systems are aging, population is urbanizing, and tasks are 

growing more complex. Over time, roads have become 

worse, traffic systems are now outdated, and maintenance 

approaches are mainly used after problems happen. Since 

these limitations lower the level of safety, they also add 

economic costs, leading to unexpected shutdowns, busy 

roads and inappropriate use of resources. As new trends in 

traffic such as more self-driving vehicles and real-time 

systems, appear, conventional ways of maintaining 

infrastructure are being highlighted as not able to handle 

these changes (Miglani & Kumar, 2019; Sharma & Rana, 

2024). 

 

Because of these urgent issues, the U.S. government 

passed the Infrastructure Investment and Jobs Act (IIJA) 

which set aside $1.2 trillion to modernize roads, bridges 

and various traffic systems. The bill is designed to fund 

and demonstrate a future focus on using digital 

technologies and automation in the country’s 

infrastructure. Yet, making policy changes measurably 

improve things depends on more than just extra funding; it 

requires updated systems, easy sharing of data and reliable 

systems that don’t affect privacy. 

 

AI within frameworks like federated learning which 

focus on privacy, can be used to greatly improve 

infrastructure resilience. AI-based methods for traffic 

predictions in today’s autonomous and connected vehicle 

systems have already shown accuracy in predicting 

movement, congestion and possible failures (Shao & Sun, 

2020; Karle et al., 2022; Biswas et al., 2021). The fact that 

federated AI can join multiple models while keeping 

transportation data decentralized is a natural fit for privacy, 

scale and security needs across the nation. 

 

Really, it’s the promise of federated AI-based 

predictive maintenance that allows for moving from 

reactive maintenance to proactive intervention. If vehicles 

and edge nodes are used as distributed intelligence points, 

it becomes possible to detect problems with mechanical 
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systems, streets and traffic much sooner than if they were 

not detected at all (Wang et al., 2019; Suh et al., 2020; 

Manne et al., 2021). Moving from traditional to smart 

transportation may increase system efficiency, keep 

people safe, cut costs and help the public trust such 

systems. It discusses how federated AI can be used for 

traffic prediction, handling computational as well as 

ethical needs of upgrading infrastructure. Reflecting on 

only current research, we describe ways autonomous 

systems, deep learning and edge computing might work 

together to build an intelligent transportation system that 

values resilience, knowledge of the future and 

responsibility with data. 

  

II. LITERATURE REVIEW 

 

 Using AI is becoming an essential part of study in 

predictive maintenance systems for autonomous and 

connected transportation. Because of AI, approaches that 

use calendars or wait for breakdowns are being phased out 

by those that use real-time sensor data to recognize 

problems, foresee breakdowns and plan maintenance at the 

best times. It reviews the existing research under three 

related headings: predictive models using deep learning, 

federated learning for distributed data and situations that 

apply to the Department of Transportation. 

  

Predictive maintenance is supported by deep learning 

models. LSTM networks, CNNs and mixing these two 

architectures have all proven valuable in traffic forecasting 

and understanding vehicle system issues. LSTM is most 

widely used for its skill at handling time-related 

dependencies in transportation data. In 2024, Waqas and 

colleagues presented an LSTM-backed network that 

contains XAI to help make autonomous systems more 

understandable. This method achieved strong accuracy 

and made decisions transparent which is important for 

using these models in public infrastructure. 

 

Similar uses of CNN-based methods can be seen for 

detecting faults in systems with many sensors found in 

vehicle tracking. According to Cui et al., using deep 

convolutional networks in a multimodal way greatly 

improved trajectory prediction in environments with 

diverse traffic agents. In addition, using CNNs together 

with LSTM layers in hybrid models improves learning and 

helps the system resist noisy inputs when working with 

traffic in smart roads (Yang et al., 2019; Lee et al., 2020).  

 

Federated Learning for Distributed Sensor Data 

Because AI systems are now heavily dependent on data 

from different edges, vehicles and sensors, there is a 

greater demand for methods that keep data private during 

model training. It is now possible to train models using 

federated learning, so no one needs to transfer confidential 

data, thus improving privacy and system efficiency. 

 

Thamizhazhagan and his co-authors (2022) 
developed a federated learning model for forecasting 

traffic flow in electric autonomous vehicles. Their 

approach performed well across different network 

arrangements and types of sensors. This corresponds to 

Shao and Sun’s (2020) eco-approach model which allows 

predictive abilities in vehicles to support green route 

planning without affecting the global traffic system. 

 

Gokasar et al. (2024) then presented the IDILIM 

system that links federated learning and the detection of 

incidents using connected autonomous vehicles. They 

developed a system that could operate well in traffic with 

mixed vehicle types and showed it was possible for 

different cars to cooperate and learn together in 

applications where safety counts. Since the cloud isn’t 

always available or manageable, this decentralized 

approach represents a common move towards federated 

servicing. 

 

Various case studies from the real world confirm that 

AI and federated models are useful platforms in preventive 

infrastructure maintenance. Vehicular data has gotten the 

most attention, but researchers also mention ways to use 

this technology for bridges and rails. Karle et al. (2022) 

reviewed motion prediction methods for AVs that could be 

expanded to detect damage to bridges by noticing shifts in 

their movement as an AV moves across one. 

 

Recommendations are now suggesting that AI should 

be used to monitor infrastructure. To illustrate, Wang et al. 

(2019) examined methods of combining future collision 

forecasts with routing strategies, supporting the federal 

standards for autonomous vehicle safety checks. This 

research also showed how information transfer from 

connected automobiles enables models to understand how 

highlighted tracks on highways are likely to wear out over 

time. 

 

Furthermore, what Chen et al. (2022) achieved by 

tracking at-risk users in real time points to the usefulness 

of vision systems in noticing the first signs of road 

deterioration. These technological advancements are also 

present in pilot initiatives by states and the government 

that apply AI-driven quality control for railway lines, 

bridge expansion joints and tunnel strength—areas where 

the use of federated AI results in predicting problems and 

maintaining compliance with national guidelines. 

 

III. METHODOLOGY 

 
This work introduces using AI-based predictive 

models and federated learning in an integrated approach to 

improve how transportation infrastructure systems are 

maintained. This method is built on three main factors: (i) 

obtaining a blend of data from several environments, (ii) 

using high-level deep learning algorithms to spot 

anomalies and anticipate failures and (iii) relying on 

secure distributed learning to exchange information across 

different infrastructure sites and cars. 

 

 Data Sources 

In today’s transportation networks, maintaining 
equipment and structures involves collecting a variety of 

data types covering operations, impacts from the 

environment and signs of damage. Just as Biswas et al. 
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(2021) and Sharma and Rana (2024) outlined, this 

methodology joins information from the following: 

 

 Temperature, vibration, load and acoustic signals are 

measured by IoT sensors standing on bridges, on roads 

and in vehicles. 

 Bridge decks, rail tracks and highway barriers can be 

inspected with visual information from drones in real 

time (Karle et al., 2022). 

 Traffic use information such as the number of cars, 

speeds and frequency of lane changes is collected from 

autonomous vehicles (Suh et al., 2020). 

 Information on precipitation, humidity and temperature 

changes plays a role in impacting the condition of roads 

and bridges (Yang et al., 2019). 

 

As the data has various forms, organizations can run 

AI models that scan both data streams and images for 

predictive analysis. 

 

 AI Models for Predictive Analysis 

Handling many types and levels of data, the proposed 

framework makes use of two main deep learning models 

created for specific data sections: 

 

 Time series problems such as predicting infrastructure 

decay, spotting abnormalities and predicting traffic 

patterns are solved using LSTM. Researchers led by 

Waqas used LSTM to predict when congestion and 

appropriate maintenance will occur by analyzing traffic 

flow and energy data. Using this method, LSTM 

models are built using IoT sensor data and previous 

traffic reports to predict where systems might fail and 

become stressed. 

 

 Convolutional Neural Networks (CNNs), like other 

neural networks, can find problems such as cracks, 

corrosion and displacements anywhere in our 

infrastructure. Using drone-collected images, the team 

passed the data into CNN networks that were created 

using study data on infrastructure issues. With CNN 

models, the system has a visual step that confirms a 

difference between regular and suspicious behavior, 

increasing the trustworthiness of alarms. 

 

By running at the same time, these models help with 

predictive maintenance through pattern matching in 

structured data and visual analysis. 

 
 Federated Learning for Privacy-Preserving Model 

Training 

Since infrastructure and vehicular data needs to be 

protected and is widely distributed, AI models are trained 

with a federated learning framework. It means that 

autonomous vehicles, roadside systems and drone control 

systems can train machine learning models jointly without 

sending information to a main server. 

 

According to Thamizhazhagan et al. (2022) and 

Gokasar et al. (20224), in this method, each node trains a 

model using its local data and then only contributes model 

updates to the coordinator, who unites the contributions. It 

makes data privacy rules accessible, enhances security and 

sees accuracy in model use everywhere. 

 

 These are the Actions used During the Federated 
Training Cycle: 

 

 All nodes are provided with a common, initialized 

global model. 

 Every node in the cluster trains the model on its 

individual data for some time. 

 The updates you make locally are sent as encrypted 

information to the central server. 

 The server accumulates the gathered data using 

federated averaging or weighted strategies (Wang et al., 

2019). 

 The updated model is then provided to agents, so they 

start a new round of training. 

 

It continues repeating until either the model has 

reached good enough performance or until the threshold 

performance is met. As a result, this method supports 

scalable and adaptable solutions needed in nationwide 

bridge monitoring or the upkeep of urban highways. 

 

IV. SYSTEM ARCHITECTURE 

 

To support predictive maintenance and traffic 

forecasting in autonomous vehicles, the system is designed 

according to the AI pipeline used in federated systems. 

Three circulation layers make up the system: data 

acquisition, local edge inference and central model 

aggregation. They all function together to support live, 

flexible and confidential analysis for many intelligent 

infrastructure assets and vehicles. 

 

 Architectural Component Data Acquisition Layer  

Here, data from the physical road system and from 

vehicles are integrated and combined. Data on load, 

vibration, the climate and structure are recorded from IoT 

sensors over time. Meanwhile, drones flying overhead 

gather high-quality images and the dashboard inside the 

vehicles records key performance elements such as 

braking, accelerating and switching lanes (Biswas et al., 

2021; Karle et al., 2022). Security is guaranteed and data 

transmission is made faster because all information is 

tagged, encrypted and stays on the edge devices. 

 

 Local Edge Inference Layer  

On local edge equipment such as embedded 

controllers, vehicle ECUs and drone processors, this layer 

runs AI models, both LSTM for sequential data and CNN 

for images. Every edge node uses its local data to perform 

inference and a little training, finding warning signs of 

damage such as tired structures or strange driving conduct 

(Suh et al., 2020; Cui et al., 2019). GeForce Jetson and 

Google Coral edge AI chips help carry out fast local 

computation with little use of energy. 

 

 Central Model Aggregation Layer  
To save space and data, edge devices regularly send 

information about how their models have been updated to 

a main server. A global model is improved on this server, 
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using a hybrid cloud, with no one having direct access to 

the data of each client on the network (Thamizhazhagan et 

al., 2022). When the global model is sent to edge nodes, 

all parts of the network become uniform and connected. 

 

 Federated AI Pipeline 
 

 
Fig 1 Federated AI Pipeline for Predictive Maintenance.  

 

The Figure Outlines Four Stages: Data 

Acquisition, Local Edge Inference, Central Model 

Aggregation, and Global Model Deployment to Edge 

Devices. 

  

Deploying AI requires infrastructure at the edge 

that makes it possible for AI inference and learning to 

happen on-the-spot. Power-saving AI chips designed for 

deep learning are found in devices. These support 

embedded computation using Intel Moidus and ARM 

Cortex-M AI accelerators, so cloud access for tasks is 

unnecessary (Lee et al., 2020). 

 

As the system is rolled out across the country, it 

does this using a hybrid cloud architecture. Model storage, 

coordinating training cycles, security rules and low-delay 

processing and inference are all supported by their cloud 

and edge layers, respectively. Due to this novel design, the 

system remains secure and works properly whenever the 

network is available. 

 

V. RESULTS AND DISCUSSION 
 

To determine the performance of the proposed 

system, the team built a simulated tested for a typical urban 

transportation network, using real parameters from prior 

studies (Waqas et al., 2024; Suh et al., 2020). IoT sensors 
monitoring bridges and roads, drone pictures of flaws in 

infrastructure and vehicle monitor data were all used in the 

simulation. The outcomes were compared to standard 

maintenance methods where routine inspection is planned 

and managed by one central group. 

 

 Predictive Performance and Anomaly Detection 

LSTM outperformed ARIMA, producing a 

MAPE of only 4.6% instead of 11.3% in the same 

conditions when used for forecasting traffic issues and 

infrastructure wear. The same as in previous studies, our 

results reveal that LSTM is superior for dealing with time-

related aspects in transportation data (Yang et al., 2019; 

Waqas et al., 2024). The CNN used for detecting faults 

from images was found to have an average precision of 

91.2% and recall of 89.5%, across datasets filled with 

images labeled as bridge cracks, surface potholes and rail 

joint defects. On the other hand, when human analysts are 

used in conventional inspection, their recall is much lower 

(~75%) and outcomes are generally made available after 

at least 24–72 hours. 

 

 Federated Learning Efficiency and Privacy Resilience 
Models that were trained jointly across different 

edge devices reached similar metrics as models trained in 

one place, seeing only a <1.2% decrease in accuracy. At 

the same time, using safe model updates made sure no data 

had to be sent over the network, resulting in much stronger 

privacy. These findings confirm it is now possible to apply 

privacy-preserving analytics in many sensitive kinds of 
infrastructure, as stated by Thamizhazhagan et al. (2022) 

and Gokasar et al. (2024). In addition, the federated model 

converged in only 12 training sessions, showing that it 

could be deployed effectively in real-world edge settings. 
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The network bandwidth used fell by more than 65% 

compared to other methods, so this style of cloud works 

well in areas with little cloud access or problems with 

connection (Shao & Sun, 2020). 

 

 Comparison with Traditional Maintenance Strategies 
 

Table 1 Comparison with Traditional Maintenance Strategies 

Metric Traditional Maintenance Proposed Federated AI Model 

Maintenance Trigger Time-based/manual Predictive AI-driven 

Data Processing Location Central server Distributed (Edge + Cloud) 

Privacy Compliance Low High 

Failure Detection Lead Time Reactive (post-failure) Proactive (up to 72h earlier) 

Inspection Costs High (manual labor) Moderate (automated) 

Model Update Frequency Quarterly or slower Weekly or real-time 

System Scalability Limited High 

 
This comparison reveals substantial gains in cost-

efficiency, responsiveness, and predictive accuracy with 

the federated AI framework. 

 

Since it is modular, the architecture can be used on 

highways, railways, road networks and intermodal hubs in 

every part of the transport system. Edge inference allows 

us to monitor crowded urban locations in real time with 

very little delays. However, in these areas, it is possible to 

train models just a few times and combine the results using 

connections through satellites or mobile edge units 

(Litman, 2017; Ahmed et al., 2021). In addition, the design 

allows for new sensor nodes or vehicles to be included 

later, with no need to retraining the system. Take drones 

on bridges, for instance: since only local data is needed, 

adding AI would not interrupt the operation of the rest of 

the network (Chen et al., 2022; Wang et al., 2019). 

 

VI. CONCLUSION 

 

New developments in artificial intelligence show 

promise for boosting the strength and up-to-date state of 

America’s transportation systems. From what we’ve 

explored here, including federated AI systems in 

predictive maintenance can ensure public infrastructure 

evolves from being handled reactively and piecemeal to 

being made more effective through data-based strategies. 

Applying LSTM models to analyze sequence data and 

CNN models to visual information lets us detect wear and 

failure sooner, so we can reduce risks and expenses. What 

stands out about this method is that it uses federated 

learning, enabling devices at the edge to cooperate on 

model training without putting any sensitive data together. 

 
Because networks are so complex and complex today, 

this intelligent technology is needed. With edge 

technology in vehicles, drones and roadside equipment, it 

is both possible and necessary to use instant monitoring 

and local processing. Doing constant analysis at the edge 

with privacy ensures that federated AI is both a good 

technical and ethical approach for managing infrastructure 

in the future. Technological development now depends on 

collective work between developers, people running the 

network and policymakers. It would be very helpful to test 

this approach through pilot programs arranged by the 

Department of Transportation and the Federal Highway 

Administration. Such programs can also uncover the 

necessary regulations and operations needed for the 

nationwide rollout. The experiences and information 

collected from these programs could guide the 

development of rules, best options and policy plans for 

using AI smoothly in public systems. 

 

AI-enhanced maintenance is best achieved when the 

technology is in place and planning has already started. 

The success of national integration will rely on being able 

to use federated AI on both densely packed urban roads 

and rural areas, without interrupting its ability to work 

seamlessly or track data correctly. We envision 

infrastructure that evolves itself by responding instantly to 

issues, changing variables in the environment and the 

traffic it sees. 
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