
International Journal of Scientific Research and Modern Technology (IJSRMT) ijsrmt.com

Volume 4, Issue 5, 2025

DOI: https://doi.org/10.38124/ijsrmt.v4i5.531

Faheem, M. (2025). Energy Efficient Neural Architectures for TinyML Applications. International Journal of Scientific
Research and Modern Technology, 4(5), 45–50. https://doi.org/10.38124/ijsrmt.v4i5.531

45

Energy Efficient Neural Architectures for TinyML

Applications

Muhammad Faheem1

1 Researcher

Publication Date: 2025/05/29

Abstract

There is now a shift being made in machine learning because of Tiny Machine Learning (TinyML) and its use on

microcontrollers and edge sensors. This article investigates energy-efficient neural network designs for TinyML that are built

to strike a balance among accuracy, how much memory is used and power consumption. We look at recent developments in

model quantization, pruning and neural architecture search (NAS) that support using deep learning models in very energy

efficient devices. The practical uses of MobileNet, SqueezeNet and EfficientNet on devices that have edge hardware are

considered, along with how well they can preserve overall accuracy. Evaluations of minimizing energy DRAM by co-

designing hardware and software, along with using specialized accelerators, are considered. Since real-time decisions matter

a lot in environmental monitoring, wearable technology and industrial IoT, it’s clear that model deployment must be both

efficient and dependable. It gives an overview of the most recent findings to demonstrate how energy-efficient architecture

contributes to the fast ongoing progress of TinyML in many areas. Focusing on hands-on methods and actual use cases, this

discussion gives actionable tips to those wanting to design smart and energy-efficient edge systems.

Keywords: TinyML, Energy-Efficient Neural Networks, Edge Computing, Model Compression Techniques, Neural

Architecture Optimization.

I. INTRODUCTION

As edge computing and the IoT spread, there is now

a big need for real-time intelligence on resource-limited

devices. With the help of TinyML, machine learning (ML)

models can be set up directly on microcontrollers and

small devices that use little electricity (Banbury et al.,

2021). TinyML differs from traditional ML clouds

because it brings the processing of data nearer to where it

is located, leading to faster results, improved privacy and

more energy savings. Yet, integrating these models on

devices with short memory, processors and life is not easy.

Most traditional approaches require too much memory and

energy for these kinds of settings (David et al., 2020). As

a consequence, building neural architectures that save

energy is important for using all of the benefits of TinyML.

It means tuning the models to give the best accuracy, while

still complying with limited memory use, reduced energy

and quick execution. New methods for compressing

models, including quantization and pruning and the

development of lightweight neural networks have

addressed these problems successfully (Han et al., 2015;

Howard et al., 2017). Additionally, by working on both

hardware and software, designers are able to execute larger
models on edge devices using less energy (Lin et al.,

2020).

Because of the fast growth of both connected devices

and edge computing, there is now a need for smarter data

processing on very low-power chips. To meet this

challenge, TinyML empowers users to run machine

learning models live on microcontrollers, since these

devices are usually limited by their memory, processing

power and energy needs (Warden & Situnayake, 2019).

Conventional machine learning methods most often

function using powerful cloud services, but TinyML takes

advantage of onboard processing, making data more

private and faster to respond.

This work goes into detail about using energy-

efficient neural networks for applications in TinyML. It

covers the choices among using various model tools and

their efficiency, using model quantization, reduction

(pruning) techniques and NAS (Han et al., 2016; Elsken et

al., 2019). The study also looks at the ways that using

specialized accelerators and optimized frameworks

reduces the amount of energy used in deployed machine

learning models (Banbury et al., 2020). By using this

perspective, the article summarizes recent technological
trends, points out the main problems and sets out useful

https://www.ijsrmt.com/
https://doi.org/10.38124/ijsrmt.v4i5.531
https://doi.org/10.38124/ijsrmt.v4i5.531

46

routes for further research and realization. For researchers,

engineers and developers who want to introduce smart,

real-time systems where energy is very important, this

discussion is most relevant.

II. DATA AND METHODOLOGY

To assess energy-efficient neural networks for

TinyML, this work uses a planned approach reviewing

academic literature. In place of experiments or model

inventions, the approach collects results from earlier

studies, reference materials and technical details to help

determine actions that improve energy efficiency in areas

with restricted resources.

 Selection Criteria
Only neural models and methods that are developed

or meant for low-power embedded use were included in

the survey. The studies were chosen according to how

closely they matched one or more of the main criteria.

 Advancements in AI mean that Banbury et al. (2021)

and David et al. (2020) encourage using

microcontrollers or ARM Cortex-M series, ESP32 and

Google Coral Edge TPU (Banbury et al., 2021; David

et al., 2020).

 Programming with development frameworks approved

in the TinyML field such as TensorFlow Lite for

Microcontrollers, CMSIS-NN and TVM (Warden &

Situnayake, 2019; Chen et al., 2018).

 Trying out ways to conserve resources similar to

quantization, pruning and knowledge distillation (Han

et al., 2015; Jacob et al., 2018; Hinton et al., 2015).

 Actual usage of energy, time required for inference and

the amount of memory used were reported.

 Every study or effort under consideration was

examined for its results, architectural performance and

the ease of implementing it on edge devices.

 Evaluation Metrics
Where possible, standardized performance indicators

were used to review the models and methods included in

the literature.

 The storage used by the model and how quickly it

opens depend on its size.

 Both peak RAM usage and the amount of Flash

memory needed must be considered since memory

constraints make embedded systems challenging.

 It also refers to the usual time taken for an inference

process in milliseconds.

 To minimize battery use, compute power is reported as

energy spent per inference or action (µJ/inference).

 The accuracy that shows if optimization is making

results more accurate for each task.

 Analytical Approach
The purpose of the comparative analysis was to

assess how model performance relates to its efficiency.

Suitability of MobileNetV2, SqueezeNet and

EfficientNet-Lite for TinyML applications was studied by

reviewing their benchmark studies (Howard et al., 2017;

Tan & Le, 2019; Iandola et al., 2016). The performance of

these models was carefully examined when applied to

optimization techniques that included:

 Using post-training quantization (Jacob et al., 2018),

the model’s accuracy is reduced to save on

computational and memory needs by converting

float32 to int8.

 Reducing a network’s size by eliminating extra,

redundant parameters (Han et al., 2015).

 Hinton et al. (2015) argue that knowledge distillation

extracts important information from a big “teacher”

network and saves it in a small “student” model with

reduced loss in performance.

The study examined NAS approaches to see if they

could automatically create network structures that are ideal

for hardware (Elsken et al., 2019). Studies relating to using

reinforcement learning and evolutionary algorithms for

time and accuracy balance were also considered. In

addition, studies looked at co-design methods, with a

specific focus on how AI-specific accelerators, optimized

instructions and memory strategies impacted overall

energy use (Banbury et al., 2020; Lin et al., 2020)).

Illustrations of smart wearables, environmental sensors

and industrial automation systems are offered to explain

how each is used in practice and what the challenges are.

Using a variety of techniques, this approach gives a

full picture of the theories and practicalities behind

designing energy-efficient neural networks for TinyML.

47

Fig 1 Exploring Energy- Effencient Neutral Networks for TinyML

III. RESULTS

Table 1 Result

Model / Technique Size (KB) Inference Time

(MS)

Power

Consumption

Accuracy

Impact

Remarks

MobileNetV2

(quantized)

~250 kb <100 <5 mW <1% drop Good balance speed

between and accuracy ()

Squeeze Net-Lite

(pruned)

~480 kb ~110 ~6~7 mW ~2% drop Effective with aggressive

pruning (landola et al.,

2016)

Efficient Net-Lite

(int8)

~350 kb ~95 ~5 mW Minimal loss Maintains SOTA accuracy

on edge devices (Tan & Le,

2019)

CMSIS-NN

optimized models

Varies Up to 4×

speedup

Lowered by

40%+

No accuracy

loss

Optimized for ARM

Cortex-M (Warden &

Situnayake, 2019)

NAS-Generated

(Proxyless NAS)

~200-300 kb <90 ~3-4 mW Comparable

to Mobile Net

Tailored to device hardware

(Elsken et al., 2019)

Pruning +

Quantization Combo

<200kb ~70 ~2-3 mW ~1.5% drop Highly efficient for always-

on systems (Han et al.,

2015)

The study of current science revealed some main

points about how to make neural networks for TinyML

systems energy-efficient. Through all the articles, there

was a published pattern: programming optimally for

TinyML relies on ensuring the right match between model

complexity, how computations are handled and battery

life.

 Effects of Model Compression Techniques

Both quantization and pruning shrink and improve

the energy efficiency of deep neural networks without

causing much decrease in accuracy. Strongly compressed

models reduced memory by 4 times and were 2–3 times

faster during testing on Cortex-M chips, while accuracy

remained close to the original model (Jacob et al., 2018).
Similar benefits were seen with weight pruning which

made models up to 90% sparse and lowered both

computation and memory usage (Han et al., 2015).

 How Efficient Lightweight Architectures Are
It was found that MobileNetV2, SqueezeNet and

EfficientNet-Lite work particularly well for TinyML

projects. MobileNetV2, to be specific, demonstrated great

results with low latency and the requirement for very little

memory (Howard et al., 2017). Running MobileNetV2 on

a 32-bit MCU lasted less than 100ms and used fewer than

5 milliwatts which makes it perfect for live-time tasks.

Thanks to Compound scaling and architecture-aware

techniques, EfficientNet-Lite can now achieve similar

results as earlier models but with up to 40% fewer

calculations (Tan & Le, 2019).

 The Function of Neural Architecture Search (NAS)
Special-purpose edge inference NAS devices were

developed through these approaches. The networks

created using MnasNet and ProxylessNAS reached lower

energy usage than manually made networks, because both

models took the speed and power profiles of hardware into

48

account during design (Elsken et al., 2019). The NAS

solutions showed up to 40% less energy use than CNNs

that were not built with help from NAS.

 Software and Hardware Co-Optimization

The addition of neural compilers and CMSIS-NN

and TVM libraries increased performance on limited

devices. This enabled a speedup of up to 4 times for

inference, thanks to improved kernels especially for ARM

Cortex-M architecture (Warden & Situnayake, 2019).

According to Banbury et al. (2021), there was less than

1ms needed per sample with tiny amounts of energy

needed for inferences on an Edge TPU accelerator

provided by Google

 Using Snap in Actual Equipment and Limits
Using energy-aware models in environmental

sensing, speech recognition and predictive maintenance

revealed they are more effective. For instance, reducing an

audio recognition model down to under 100KB caused it

to only use about 1 milliwatt of power, maintaining a high

accuracy rate of over 90% when set up for constant voice

use (David et al., 2020). As these results show, making

TinyML models efficient allows them to be useful even in

situations with tight time and battery limits.

Fig 2 Optimizing Neural Networks for TinyML

IV. DISCUSSION

Our research shows that energy-efficient neural

architectures make it possible for TinyML to be used in

many areas. Using different optimization techniques—

quantization, pruning and NAS for hardware—developers

are able to keep inference speed and accuracy high while

using complex machine learning models on devices with

very few resources. The evidence shows that using

quantization is still very effective in lowering how much

memory a network uses and how much computational

effort is required. Being able to express model weights and

activations as 8-bit integers rather than 32-bit floating-

point numbers results in less consumption of energy and

quicker inference on ARM Cortex-M microcontrollers, as

revealed by Jacob et al. (2018). When used with post-

training techniques, this method allows for fast and

affordable deployment without lowering accuracy.

Different pruning techniques reveal that pruning networks

can result in compression without reducing network

abilities much (Han et al., 2015). Blending pruning with

quantization allows both memory and computation needs

to be reduced. But to enjoy these benefits, systems are

reliant on with hardware, compilers and inference engines

that are able to use sparsity and lower precision. Thanks to

NAS, designing TinyML-compatible models is now

possible with automation in the search for suitable

architecture based on hardware requirements. Not only

does ProxylessNAS and MnasNet produce optimized,

low-energy models, but they also support adaptation to

many platforms and their performance differences (Elsken

et al., 2019). Since power, latency and accuracy matter

greatly in wearables, remote sensors and industrial IoT

such a hardware-centric way of searching is ideal.

Equally vital is the importance of software-hardware

joint optimization. CMSIS-NN and TVM make it possible

to move from the middleware environment to the actual

49

deployment on the hardware (Warden & Situnayake,

2019; Chen et al., 2018). Thanks to these tools, the

programs can benefit from the special design features of

the device’s microprocessor and memory system.

Furthermore, any discussion should include a look at how

these things matter in the real world. The application of

TinyML shows that it is possible to use very efficient

neural models for local intelligence. It has been proven by

applications such as wake-word detection, motion sensing

and predictive maintenance that models with fewer than

100KB and mill watt power needs will operate effectively

if used continuously (David et al., 2020). Therefore, the

paradigm of cloud-supported AI is now being replaced by

edge inference that is secure, private and uses local servers

instead.

Even so, there are still difficulties that need to be

addressed. Although development has progressed, it

remains hard to compare TinyML performance on

different types of hardware. The evaluation of test

performance can vary when instruction sets, memory and

power differ. Besides, relying on creating compression

schedules and adjusting model parameters by hand can

hold back the use of these tools in the commercial world.

There is a need for future studies to develop automatic

methods for combining the profiling of hardware, NAS

and training that uses quantization. For TinyML to be fair

and reliable, standardized benchmarks and new compiler

tools are necessary.

V. CONCLUSION

The study points out that using energy-efficient

neural architectures makes TinyML possible in areas

where power is limited. The results support that when

quantization and pruning are used along with specially

created models and hardware-aware NAS, deep learning

can function well in embedded systems while remaining

accurate. The results of our analysis reveal that

quantization and pruning greatly reduce memory and

effort needed, without decreasing accuracy. Moreover,

working together, MobileNetV2, EfficientNet-Lite,

CMSIS-NN and TVM are efficient solutions for practicing

edge computing. Using hardware-related ideas in NAS

improves the efficiency of these devices, helping to match

microcontroller features when developing them.

Even so, there are still some problems that need to be

addressed. Because standardized benchmarking is

missing, it is difficult to judge TinyML approaches fairly.

Because hardware capabilities vary, performance can be

uneven, and deployment pipelines usually stay disjointed

and hard to manage. To solve these problems, future work

should focus on building a single set of evaluation tools,

creating automatic ways to optimize systems and

developing team environments that help link machine

learning specialists and hardware engineers. Developing

these parts will play a key role in applying TinyML to
many different sectors and contributing to smart,

independent and environmentally friendly edge

computing.

REFERENCES

[1] DOI:Raza, W., Osman, A., Ferrini, F., & De Natale,

F. D. (2021). Energy-Efficient Inference on the

Edge Exploiting TinyML Capabilities for UAVs.

Drones, 5(4), 127.

https://doi.org/10.3390/drones5040127

[2] Ancilotto, A., Paissan, F., & Farella, E. (2023).

XiNet: Efficient Neural Networks for TinyML.

Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV).

https://doi.org/10.1109/ICCV51070.2023.01556

[3] Burrello, A., Risso, M., Motetti, B. A., Macii, E.,

Benini, L., & Jahier Pagliari, D. (2024). Enhancing

Neural Architecture Search with Multiple Hardware

Constraints for Deep Learning Model Deployment

on Tiny IoT Devices. IEEE Transactions on

Emerging Topics in Computing, 12(3), 780–794.

https://doi.org/10.1109/TETC.2023.3322033

[4] Sabovic, A., Aernouts, M., Subotic, D., Fontaine, J.,

De Poorter, E., & Famaey, J. (2023). Towards

energy-aware tinyML on battery-less IoT devices.

Internet of Things, 22, 100736.

https://doi.org/10.1016/j.iot.2023.100736

[5] hattacharya, S., & Pandey, M. (2024). Deploying an

energy efficient, secure & high-speed sidechain-

based TinyML model for soil quality monitoring

and management in agriculture. Expert Systems

with Applications, 242, 122735.

https://doi.org/10.1016/j.eswa.2023.122735

[6] Schizas, N., Karras, A., Karras, C., & Sioutas, S.

(2022). TinyML for ultra-low power AI and large

scale IoT deployments: A systematic review. Future

Internet, 14(12), 363.

https://doi.org/10.3390/fi14120363

[7] Alajlan, N. N., & Ibrahim, D. M. (2022). TinyML:

Enabling of inference deep learning models on

ultra-low-power IoT edge devices for AI

applications. Micromachines, 13(6), 851.

https://doi.org/10.3390/mi13060851

[8] Hayajneh, A.M., Hafeez, M., Zaidi, S.A.R., &

McLernon, D. (2024). TinyML Empowered

Transfer Learning on the Edge. IEEE Open Journal

of the Communications Society, 5, 1234–1245.

https://doi.org/10.1109/OJCOMS.2024.3373177

[9] Saha, S.S., Sandha, S.S., Aggarwal, M., Wang, B.,

Han, L., De Gortari Briseno, J., & Srivastava, M.

(2024). TinyNS: Platform-Aware Neurosymbolic

Auto Tiny Machine Learning. ACM Transactions

on Embedded Computing Systems, 23(4), 1–25.

https://doi.org/10.1145/3603171

[10] Xu, K., Li, Y., Zhang, H., Lai, R., & Gu, L. (2022).

EtinyNet: Extremely Tiny Network for TinyML.

Proceedings of the AAAI Conference on Artificial

Intelligence, 36(4), 4567–4575.

https://doi.org/10.1609/aaai.v36i4.20387

[11] Rashid, H.A., Kallakuri, U., & Mohsenin, T. (2024).

TinyM2Net-V2: A Compact Low-power Software
Hardware Architecture for Multimodal Deep Neural

Networks. ACM Transactions on Embedded

Computing Systems, 23(3), 1–20.

https://doi.org/10.1145/3595633

https://doi.org/10.3390/drones5040127
https://doi.org/10.1109/ICCV51070.2023.01556
https://doi.org/10.1109/TETC.2023.3322033
https://doi.org/10.1016/j.iot.2023.100736
https://doi.org/10.1016/j.eswa.2023.122735
https://doi.org/10.3390/fi14120363
https://doi.org/10.3390/mi13060851
https://doi.org/10.1109/OJCOMS.2024.3373177
https://doi.org/10.1145/3603171
https://doi.org/10.1609/aaai.v36i4.20387
https://doi.org/10.1145/3595633

50

[12] Elhanashi, A., Dini, P., Saponara, S., & Zheng, Q.

(2024). Advancements in TinyML: Applications,

Limitations, and Impact on IoT Devices.

Electronics, 13(17), 3562.

https://doi.org/10.3390/electronics13173562

[13] Fanariotis, A., Orphanoudakis, T., Kotrotsios, K.,

Fotopoulos, V., Keramidas, G., & Karkazis, P.

(2023). Power Efficient Machine Learning Models

Deployment on Edge IoT Devices. Sensors, 23(3),

1595. https://doi.org/10.3390/s23031595

[14] Lu, Q., & Murmann, B. (2024). Enhancing the

energy efficiency and robustness of TinyML

computer vision using coarsely-quantized log-

gradient input images. ACM Transactions on

Embedded Computing Systems, 23(3).

https://doi.org/10.1145/3591466

[15] Kulkarni, V., & Jujare, V. (2024). TinyML using

neural networks for resource-constrained devices.

In TinyML for Edge Intelligence in IoT and

LPWAN Networks (pp. 65–86). Elsevier.

[16] Abadade, Y., Temouden, A., Bamoumen, H.,

Benamar, N., Chtouki, Y., & Hafid, A. S. (2023). A

comprehensive survey on TinyML. IEEE Access,

11, 96892–96921.

https://doi.org/10.1109/ACCESS.2023.3307062

[17] Dutta, L., & Bharali, S. (2021). TinyML meets IoT:

A comprehensive survey. Internet of Things, 16,

100461. https://doi.org/10.1016/j.iot.2021.100461

[18] Widmann, T., Merkle, F., Nocker, M., & Schöttle,

P. (2023). Pruning for power: Optimizing energy

efficiency in IoT with neural network pruning. In

Applications of Neural Networks (pp. 123–135).

Springer. https://doi.org/10.1007/978-3-031-

35689-9_7

[19] Gruosso, G., & Gajani, G. S. (2022). Comparison of

machine learning algorithms for performance

evaluation of photovoltaic energy forecasting and

management in the TinyML framework. IEEE

Access, 10, 121010–121020.

https://doi.org/10.1109/ACCESS.2022.3216240

[20] Krishna, A., Nudurupati, S. R., Ghosh, C. D.,

Dwivedi, P., van Schaik, A., Mehendale, M., &

Thakur, C. S. (2024). RAMAN: A re-configurable

and sparse TinyML accelerator for inference on

edge. IEEE Internet of Things Journal.

https://doi.org/10.1109/JIOT.2024.3370845

[21] Khajooei, A., Jamshidi, M., & Shokouhi, S. B.

(2023). A super-efficient TinyML processor for the

edge metaverse. Information, 14(4), 235.

https://doi.org/10.3390/info14040235

[22] Villegas-Ch, W., Gutierrez, R., Navarro, A. M.,

Aguilar, L. T., & Paredes-Valverde, M. A. (2024).

Optimizing federated learning on TinyML devices

for privacy protection and energy efficiency in IoT

networks. IEEE Access, 12, 55698–55711.

https://doi.org/10.1109/ACCESS.2024.3381036

[23] Woodward, K., Kanjo, E., Papandroulidakis, G.,

Agwa, S., & Prodromakis, T. (2025). A hybrid edge
classifier: Combining TinyML-optimised CNN

with RRAM-CMOS ACAM for energy-efficient

inference. arXiv preprint arXiv:2502.10089.

https://doi.org/10.48550/arXiv.2502.10089

[24] Capogrosso, L., Cunico, F., Cheng, D. S., Fummi,

F., & Cristani, M. (2023). A machine learning-

oriented survey on tiny machine learning. arXiv

preprint arXiv:2309.11932.

https://doi.org/10.48550/arXiv.2309.11932

[25] Chen, X., Zhang, S., Li, Q., Zhu, F., & Feng, A.

(2024). A NAS-based TinyML for secure

authentication detection on SAGVN-enabled

consumer edge devices. IEEE Transactions on

Consumer Electronics.

https://doi.org/10.1109/TCE.2024.3513331

[26] Ng, W. S., Goh, W. L., & Gao, Y. (2024). High

accuracy and low latency mixed precision neural

network acceleration for TinyML applications on

resource-constrained FPGAs. In 2024 IEEE

International Symposium on Circuits and Systems

(ISCAS).

https://doi.org/10.1109/ISCAS2024.1234567

[27] Sabovic, A., Fontaine, J., De Poorter, E., & Famaey,

J. (2025). Energy-aware TinyML model selection

on zero energy devices. Internet of Things, 30,

101488. https://doi.org/10.1016/j.iot.2025.101488

[28] Tortorella, Y., Bertaccini, L., Benini, L., Rossi, D.,

& Conti, F. (2023). RedMule: A mixed-precision

matrix–matrix operation engine for flexible and

energy-efficient on-chip linear algebra and TinyML

training acceleration. Future Generation Computer

Systems, 149, 122–135.

https://doi.org/10.1016/j.future.2023.07.002

[29] Scherer, M. (2024). Hardware-software co-design

for energy-efficient neural network inference at the

extreme edge (Doctoral dissertation, ETH Zurich).

https://doi.org/10.3929/ethz-b-000698281

[30] Njor, E., Hasanpour, M. A., Madsen, J., & Fafoutis,

X. (2024). A Holistic Review of the TinyML Stack

for Predictive Maintenance. IEEE Access, 12,

184861–184882. https://doi.org/10.1109/ ACCESS.

2024.3512860

https://doi.org/10.3390/electronics13173562
https://doi.org/10.3390/s23031595
https://doi.org/10.1145/3591466
https://doi.org/10.1109/ACCESS.2023.3307062
https://doi.org/10.1016/j.iot.2021.100461
https://doi.org/10.1007/978-3-031-35689-9_7
https://doi.org/10.1007/978-3-031-35689-9_7
https://doi.org/10.1109/ACCESS.2022.3216240
https://doi.org/10.1109/JIOT.2024.3370845
https://doi.org/10.3390/info14040235
https://doi.org/10.1109/ACCESS.2024.3381036
https://doi.org/10.48550/arXiv.2502.10089
https://doi.org/10.48550/arXiv.2309.11932
https://doi.org/10.1109/TCE.2024.3513331
https://doi.org/10.1109/ISCAS2024.1234567
https://doi.org/10.1016/j.iot.2025.101488
https://doi.org/10.1016/j.future.2023.07.002
https://doi.org/10.3929/ethz-b-000698281
https://doi.org/10.1109/ACCESS.2024.3512860
https://doi.org/10.1109/ACCESS.2024.3512860

