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Abstract 
Various forms of noise, including as sensor noise, compression artefacts, and ambient disturbances, are frequently present in 

real-world photographs. These noises can severely reduce the quality of the images and have an effect on future computer 

vision tasks. In this study, we offer a unique method that uses Generative Adversarial Networks (GANs) to remove undesired 

sounds from actual scene photos. Since they can produce realistic pictures and understand intricate data distributions, GANs 

have become a potent tool in the image production and modification domain. Our approach uses GAN model which is made 

up of a discriminator and a generator network, where the discriminator's job is to discern between actual and created pictures, 

while the generator's is to produce clean images from noisy inputs. The generator efficiently learns to eliminate noise from 

input pictures while maintaining important features and structures using an adversarial training procedure. We assess the 

suggested method using industry-standard benchmark datasets and show encouraging outcomes in terms of picture restoration 

and noise reduction. By improving picture denoising algorithms, this research advances potential uses in surveillance analysis, 

object recognition, and semantic segmentation. 
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I. INTRODUCTION 
 

Image denoising has become an important task in 

many computer vision applications in recent years. Noise 

corruption in digital photographs can result from a variety 

of sources, including camera sensors, lighting conditions, 

transmission faults, and compression artifacts. Biological 

imaging also has difficulties with low light and short 

exposure times, which deteriorates image quality even 

further [1]. As a result, image restoration has become 

essential in a variety of domains, such as underwater. 

 

CNN is a deep learning, have revolutionized image 

processing applications in recent years. In many image-

related applications, such as image identification, object 

detection, and image denoising, CNNs perform remarkably 

well. Furthermore, the ability of GANs to produce realistic 

images has won them notoriety [2]. 

 

Motivated by recent developments in deep learning, 

we suggest a new GAN-based model for picture denoising. 

Our model learns to counteract picture noise by utilizing the 

generator and discriminator architecture of GANs. 

Specifically, our proposed generator employs an encoder-

decoder architecture with shortcut connections akin to Res-
Net in order to preserve image texture features. To increase 

training stability, the loss function incorporates the 

Wasserstein distance [3]. 

 

A. Types of Noise in the Image 
Noise is the unwanted signals that distort the original 

signals, here in images, this refers to unwanted variations 

in pixel values of the images that degrade the quality and 

hinder accurate interpretation and analysis. 

 

 Gaussian Noise:  

Gaussian noise is characterized by random variations 

in pixel intensity levels, following a Gaussian distribution. 

It often occurs due to sensor limitations, electronic 

interference, or transmission errors, manifesting as a 

smooth, continuous distribution of noise across the image. 

 

 Salt and Pepper Noise:  
This consists of randomly occurring bright and dark 

pixels scattered throughout the image. It typically arises 

from sensor malfunctions, transmission errors, or data 

corruption, leading to isolated high-intensity (salt) and low-

intensity (pepper) pixels [4]. 

 

 Shot Noise:  

Shot noise is inherent in photon-based imaging 
systems and occurs due to the random arrival of photons at 

the image sensor. It introduces variability in pixel values, 
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particularly in low-light conditions, and appears as grainy 

or speckled patterns in the image. 

 

 Speckle Noise:  

Speckle noise is prevalent in coherent imaging 

systems such as ultrasound and synthetic aperture radar 

(SAR) and arises from the interference of coherent waves. 

It appears as granular patterns that distort image features 

and reduce clarity [5]. 

 

 Quantization Noise:  
Quantization noise occurs during the digitization 

process when continuous analog signals are discretized into 

digital values. It introduces errors due to the finite precision 

of digital representations, resulting in loss of detail and 

fidelity in the image. 

 

 Random Noise:  

Random noise encompasses various sources of 

unpredictable fluctuations in pixel values, including 

electrical noise, thermal noise, and environmental factors. 

It can manifest in different forms, such as high-frequency 

spikes or low-frequency variations, depending on the 

underlying causes. 

 

II. RELATED WORK 

 

Recent research has explored the use of Generative 

Adversarial Networks (GANs) for image denoising, 

demonstrating their effectiveness in preserving texture and 

detail while removing noise. Various GAN architectures 

have been proposed, including a new generator network 

with a novel loss function. ZhiPing, Qu, et al [6] proposed 

GAN based network with residual dense blocks. This 

approach has shown superior performance compared to 

traditional denoising methods. Alsaiari, Abeer, et al [7] 

have also investigated the use of Wasserstein distance, 

perceptual loss, and reconstruction loss in the objective 

function to improve denoising results. Zhong, Yue, et al [8] 

performed a study in which the multi-level convolution and 

residual blocks have been incorporated into GAN 

architectures to enhance feature extraction and learning. 

Chen, Songkui, et al [9] designed an application for image 

denoising using GAN. This application has become a 

significant area of research, with potential for further 

advancements in the field. 

 

A. Image Denoising 

Chen, Jingwen, et al [10] developed an image 

denoising method. This aims to remove undesirable noise 

while keeping significant information and features of the 

image. There are two types of traditional image denoising 

techniques: spatial and frequency-based. 

 

 Spatial Denoising Methods 

Li, Yuqin, et al [11] proposed a spatial denoising 

method. This spatial denoising techniques work directly 

with the image's pixel values. To reduce noise and maintain 
visual details, these techniques usually entail local 

averaging or filtering procedures. Typical methods for 

spatial denoising include of: 

 

 Median Filtering:  

This non-linear filtering technique effectively 

eliminates salt-and-pepper noise by substituting the median 

value of each pixel's vicinity for each one. 

 

 Gaussian Filtering:  

This technique reduces Gaussian noise by applying a 

weighted average using a Gaussian kernel to the vicinity of 

each pixel. 

 

 Wiener Filtering:  
Thus filter is used to remove the additive noise and it 

applies the frequencies depending on the weighting 

transform the image. This process takes place by 

calculating the noise power spectrum. 

 
 Frequency Denoising Methods: 

Sheng, Zehua, et al [12] developed a denoising 

method using frequency-domain deep guided method. This 

method uses filtering based on the frequency features that 

separate the signal from the noise that are in the images. 

After applying the Fourier transformations to images, 

frequency denoising methods will operate in the frequency 

domain. Some popular methods of frequency denoising are 

given below: 

 

 Wavelet Denoising:  

This technique applies thresholding to reduce noise 

while preserving image details after dividing the images 

into numerous frequency subbands. 

 

 Bandpass Filtering:  

This method utilizes the threshold to reduce noise 

when preserve picture information after dividing the image 

into many frequency sub bands. 

 

B. CNN- Based Image Processing 

Zhang, Kai et al [13] propose CNN-based techniques 

which have shown to be extraordinarily successful at 

eliminating noise from images while preserving crucial 

aspects of the image. These type networks have 

revolutionized the field of image processing and denoising 

over the years because they construct hierarchical 

representations directly from raw pixel input. In these type 

of networks some convolutional layers, activation 

functions, pooling layers, and flatten layer are used to build 

the systems. This network enables to translate the noisy 

input image to clean image by minimizing suitable loss 

function like mean squared error or perceptual loss [14].  

Training processes involve various steps and it uses large 

datasets which contain pairs of clean and noisy images. 

Some other methods like batch normalization and dropout 

are used to minimize overfitting and enhance generalization 

of the images [15]. 

 

Optimization techniques like Adam and Stochastic 

Gradient Descent (SGD) are used to ensure the model 

convergence, divergence and prevent [16]. When assessing 

CNN-based image denoising models, evaluation metrics 

such as mean absolute error, peak signal-to-noise ratio and 

structural similarity index are taken to measure the quality. 

Advances in CNN-based image processing include 
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adversarial training methodologies, attention mechanisms, 

and deep residual networks. Future work will probably 

concentrate on novel architectures, domain-specific priors, 

and issues with managing heterogeneous noise and data 

distributions [17]. 

 

III. METHODOLOGY 

 

A. Generative Adversarial Networks 
In contemporary studies of deep learning, GANs have 

come up as a mostly novel avenue, especially in the domain 

of image generation, manipulation and denoising. The 

GANs form a minimax game which consists of two neural 

networks referred to as the discriminator and the generator. 

The goal of the generator is making synthetic samples that 

are indistinguishable to the naked positive from the 

standard original image while on the other hand, the aim of 

the discriminator is to differentiate the real image from the 

synthesized fakes. 

 

B. DC Generative Adversarial Networks 

A DCGAN is just a simple extension of the Generative 

Adversarial Networks covered, with the exception of the 

explicit addition of convolutional and convolutional-

transpose layers in the discriminator and generator, 

respectively. This model can be represented by 

unsupervised learning with DCGAN. The discriminator is 

composed of multiple parameters, such as batch norm 

layers, stride convolution layers, and leaky ReLU 

activations. The input is a 3x64x64 input picture, and the 

output is a scalar probability indicating that the input is 

from the real data distribution. The generator consists of 

convolutional-transpose layers, batch normalization layers, 

and ReLU activations. The input is a latent vector, z that is 

drawn from a traditional normal distribution; the output is 

a 3x64x64 RGB picture. 

 

C. Residual Learning 

Residual learning has emerged as a key deep learning 

technique aimed at alleviating problems associated with 

extremely deep neural networks. In an effort to enhance 

model performance and extract intricate picture 

characteristics for tasks like image denoising, researchers 

frequently encounter difficulties with deeper networks, 

such as information loss during feature extraction. So 

created the residual structure, which effectively reduces 

information loss by constructing paths between input and 

output inside each block through the integration of skip 

connections. Fig. 1 shows the generator network 

architecture. 

 

 
Fig 1 Generator Network Architecture 

 

The generator is denoted by the letter G. A latent space 

vector, Vz, is transformed by G into data-space, which is 

made up of picture data. To perform this conversion, an 

RGB image with the same dimensions as the training 

images—3x64x64—must be created. This is accomplished 

by employing a sequence of stride two-dimensional 

convolutional transpose layers, each of which is succeeded 

by a two-dimensional batch normalization layer and an 

activation function represented by rectified linear units 

(ReLU). The generator's output is additionally subjected to 

a hyperbolic tangent (tanh) function to make sure it is 

within the input data range of [−1, 1]. 

 

Interestingly, batch of normalization—a crucial 

technique described in the DCGAN study to promote 

gradient flow during training—is done following the 

convolutional transpose layers. The input section's 

parameters—namely, ngf, nz, and c—have a significant 

impact on the code's generator design. In this instance, ngf 

sets the size of the feature maps that propagate through the 

generator, nc, which stands for the number of channels in 

the output image and is typically set to three for RGB 

images, indicates the number of channels in the image, and 

dz indicates the length of the input of the vector that are 

given by d. An architectural diagram of the generator is 

included in the DCGAN paper. Fig. 2 shows the DC-GAN 

generator network architecture. 
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Fig 2 DC-GAN Generator network Architecture 

 
D. Discriminator Network Architecture 

As a binary classification network, the discriminator, 

represented by (D), is tasked with identifying the 

probability that an input image is authentic or fraudulent. 

After going through a series of training process by  Conv2d, 

BatchNorm2d, and LeakyReLU layers on a 3x64x64 input 

image, it outputs a scalar probability using function such as 

Sigmoid activation function. The selection of the 

BatchNorm, LeakyReLU, and strided convolution layers is 

important, even if this architecture can be expanded with 

further layers as needed. Since strided convolution enables 

the network to train its own pooling function, the DCGAN 

article recommends it over pooling for downsampling. 

Furthermore, the use of LeakyReLU activation functions 

and batch normalization fosters a healthy gradient flow is 

necessary for the recoganization, which is essential for the 

learning process of the generator (G) and discriminator (D). 

 

E. Loss Functions and Optimizers 

After the discriminator (D) and generator (G) are set, 

the learning process is controlled by choosing loss 

functions and optimizers. To compute the binary cross 

entropy between the target and predicted labels, we use the 

PyTorch library's defined Binary Cross Entropy loss 

(BCELoss) function. The two halves of the objective 

function is represented by (log(D(x)) ) and (log(1 - D(G(z)) 

), are combined in this function. We may provide flexibility 

in the training process by selecting which part of the 

equation to calculate by changing the target labels (y). 

 

 
 

In order to maintain consistency with the original 

GAN paper, we refer to the true label as 1 and the false label 

as 0. Two different Adam optimizers are used for (D) and 

(G), as suggested in this DCGAN research paper, with 

settings like learning rate of 0.0002 and Beta1 set to 0.5. 

Additionally, we generate a fixed batch of latent vectors 

(called fixed_noise) based on a Gaussian distribution to 

monitor the generator's learning curve. Throughout the 

training loop will continue until the noise has be reduced, 

this fixed_noise is regularly entered into (G), enabling us to 

see how the output images change over iterations. 

 

F. Training DC- GAN 
Training a Generative Adversarial Network (GAN) 

requires a multi-step process that carefully takes 

optimization strategies and hyperparameters into account. 

Mode collapse and other issues must be avoided by 

following advised processes and practices because of the 

inherent complexity of GAN. 

 

The two main components of the training process they 

are generator and the discriminator. The first component is 

to update the discriminator such that it can accurately 

distinguish between real and the fake samples of the 

images. This can be achieved by building separate mini-

batches for real and fake images, figuring out the loss for 

each batch, and then updating the discriminator's 

parameters using gradient descent. 

 

 Part-1 Train the Discriminator 
The main goal at this point is to properly train the 

discriminator to differentiate between the actual and bogus 

inputs. We use gradient ascent of stochastic to update the 

discriminator and follow Goodfellow's methodology to 

improve its performance. Our objective is to maximize the 
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function that assesses how well the discriminator separates 

authentic data from bogus data. We divide the procedure 

into two parts in order to do this. 

 

First, a batch of actual dataset samples are created, run 

through the discriminator, and then the gradients are 

computed in a backward pass after determining the loss 

based on the sample's categorization as real or fake. Next, 

we use the current generator to create a batch of fictitious 

samples, which we then run through the discriminator, 

compute the loss, and accumulate gradients in a similar 

fashion. Through an optimization process, we adjust the 

discriminator's parameters by summing the gradients from 

the real and fictitious batches. 

 

 Part-2 Train the Generator 
In the next step, we focus on training the Generator 

network. The objective is to enhance the quality of 

generated fake samples by minimizing the loss function, 

specifically aiming to maximize the log probability of the 

Discriminator being fooled by these generated samples. 

Initially proposed by Goodfellow, this approach often lacks 

sufficient gradients, especially during early training stages. 

To address this, we adopt a strategy of maximizing the log 

probability of the Discriminator correctly classifying the 

generated samples as real. In our implementation, we 

achieve this by classifying the Generator's output from the 

previous step using the Discriminator, computing the 

Generator's loss based on real labels, computing gradients 

in a backward pass, and updating the Generator's 

parameters using an optimizer step. Using real labels for the 

loss function may seem odd, but it serves our goal by 

enabling us to take advantage of the BCE Loss's log(x) 

component. We also graphically track the Generator's 

performance at the end of each training epoch and present 

important statistics to track the progress of training. These 

data contain the average output of the discriminator for both 

real and fake batches, as well as discriminator and generator 

loss values. 

 

For visually observing the G’ training process, we will 

lastly perform some statistic reporting and pushing our 

fixed noise batch to the generator at the conclusion of each 

epoch. The following training statistics have been reported: 

 

 Loss_D - discriminator loss computed as log(D(x)) + 

log(1-D(G(z))), which is the total of losses for all actual 

and all fake batches. 

 

 Generator loss expressed as log(D(G(z))) is called 

Loss_G. 

 

 D(x): the discriminator's average output (for the entire 

real batch) across the batch. When G improves, this 

should potentially converge to 0.5 from a starting point 

near Consider the reasons behind this. 

 

 Note: Depending on how many epochs you run and 
whether you eliminated any data from the dataset, this 

phase may take some time. 

 

IV. IMLEMENTAION 
 

A. Dataset 
For this study, we primarily used data from the 

University of California, Berkeley Segmentation Dataset 

and Benchmark 500 (BSDS500) datasets [18]. These 

datasets served as the foundation for the training of our 

denoising models for both color and grayscale images. 

Nevertheless, since these datasets are too small for effective 

network improvement, we enhanced the 500 color images 

from BSDS500 by adding Gaussian white noise with 

various standard deviations which results a dataset with 

1500 noisy images. 

 

Then, in order to train the color picture denoising 

model, we increased the size of our dataset by producing 

3000 pairs of noisy, blurry images using methods like 

image flipping. To train the grayscale image denoising 

model, a final dataset of 2400 clear-noisy image pairs was 

obtained by applying the same augmentation to the 400 

grayscale photos from BSDS500. 

 

The standard colour set was used to evaluate the 

denoising performance for both colour and grayscale 

images. To ensure that our training and testing datasets 

remained distinct, we limited our denoising trials to the 

testing dataset. We mimicked noise observed in the real 

world by utilizing Gaussian noise, which offers a 

straightforward approximation for managing complex 

noise distributions. We also employed data augmentation to 

increase the model's generalization ability. Specially 

flipping technique which is used to improve the model's 

ability to gain spatial invariance across various image 

orientations. 

 

B. Evaluation Metrics 

 

 Peak Signal-to-Noise Ratio (PSNR) 

PSNR is a performance evaluation metric which is 

used to assess image quality. It evaluates the denoising 

performance in the presence of ground truth, noise-free 

images. It matches pixel-to-pixel variations between the 

ground truth and denoised images. This is calculated using 

the mean square error (MSE) and it is given by the 

following formula: 

 

 
 

 
 

Where, 

 

𝑀×𝑁 are dimension of noisy images. 

 

𝑋𝑖𝑗 and 𝑌𝑖𝑗 represents to the pixel values. 
 

𝑼 and 𝑗 pixel coordinates inside the image. 

 

n is the greatest grayscale level of the image. 
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 Structural Similarity Index (SSIM) 
This method is also used to evaluate picture denoising, 

it is a metric that evaluates image similarity by taking into 

account numerous variables, such as contrast, brightness, 

and structure. Equations presents the SSIM calculating 

procedure. 

 

 
 

 
 

Where the two images in the structural similarity 

comparison are denoted by 𝑋 and 𝑌, and the similarity in 

brightness, contrast, and structure is indicated by 𝑙(𝑋,𝑌), 

𝑐(𝑋,𝑌), and 𝑠(𝑋,𝑌), respectively. The two images' pixel 

means are represented by 𝜇𝑋 and 𝜇𝑌, while their pixel 

standard deviations are represented by 𝜎𝑋 and 𝜎𝑌. The 

covariance between the two images is represented by 𝜎𝑋𝑌. 

The constants 𝐶11, 𝐶22, and 𝐶33 prevent a zero 

denominator, thereby guaranteeing the validity of the 

structure. Under typical conditions, 𝐶1=(𝐾1×𝐿)1=(1×1), 

𝐶2=(𝐾2×𝐿)2=(2×2), and 𝐶3=(𝐶2/2)3=(2/2) have the values 

𝐾11 = 0.01, 𝐾22 = 0.03, and 𝐿 = 255. 

 

V. RESULTS AND DISCUSSION 

 

A. Quantitative Analysis 
Several denoising techniques are evaluated in this 

work using the BSD68 dataset with Gaussian white noise 

of different intensities (σ = 15, 25, and 50), including 

WGAN-VGG, Re-GAN, DnCNN, and BM3D. The 

experimental results show that, with significant gains in 

both PSNR and SSIM, our suggested technique 

continuously performs better than other algorithms at 

varying noise intensities. For example, our approach yields 

improvements in SSIM and an average increase in PSNR 

of 9.05 dB over BM3D at σ = 15. Likewise, when compared 

to previous methods, our technique significantly improves 

PSNR and SSIM at higher noise levels (σ = 25 and 50), 

demonstrating its strong denoising powers. Fig. 3 shows the 

comparison of denoising algorithms. 

 

 
Fig 3 Comparison of Denoising Algorithms 

 

B. Time Complexity Analysis 

When assessing denoising methods, temporal 

complexity is just as important as conventional 
measurements like PSNR and SSIM. RCA-GAN, our 

algorithm, outperforms other techniques in terms of 

efficiency and significantly shortens the denoising time. It 

has a shorter average denoising time in a CPU context than 

WGAN-VGG, Re-GAN, BM3D, and DnCNN. It shows 

notable gains in denoising efficiency over DnCNN, 

WGAN-VGG, and Re-GAN in a GPU context. Our 

algorithm's attention mechanism, which maximizes feature 
use while lowering computational cost, is responsible for 

these gains. As a result, our technique achieves better 

runtime efficiency performance. Fig. 4 shows the 

performance analysis. 
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Fig 4 Performance Analysis of Denoising Methods 

 

VI. CONCLUSION 
 

This work introduces an improved GAN-based image 

denoising technique called RCA-WGAN, which addresses 

the issue of standard denoising algorithms losing edge and 

fine-grained information in denoised images. RCA-WGAN 

integrates cooperative attention mechanisms and residual 

structures in the feature extraction section of the generator 

network. For extracting more information from the image 

and reduce noise without compromising image quality, it 

also makes use of a global residual link. A multimodal loss 

function that has texture loss, adversarial loss, perceptual 

feature loss, and pixel space content loss is constructed 

using a weighted summation for optimizing noise 

reduction. Apart from this, the proposed denoising method 

minimizes texture loss caused by the denoising process by 

utilizing important RGB channel attributes. 

 

The comparative analysis between the proposed 

technique and four widely-used denoising algorithms 

namely WGAN-VGG, DnCNN, Re-GAN, and BM3D 

demonstrates how well the former restores texture details in 

images. Experimental results of this study show that the 

proposed method performs exceptionally well in denoising, 

especially with improvements made to the denoising 

network module and loss function module, as measured by 

objective assessment criteria such as PSNR and SSIM 

values. When it comes to noise reduction without 

sacrificing image texture features, the proposed method 

performs better than other approaches. The denoising 

process still has a significant problem with handling 

complex noise in practical situations. Subsequent 

investigations will concentrate on enhancing the real-time 

processing and complex noise reduction capabilities of 

RCA-WGAN by means of further enhancements. 
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